Schwarz Waveform Relaxation with Adaptive Pipelining
نویسندگان
چکیده
منابع مشابه
Parareal Schwarz Waveform Relaxation Methods
Solving an evolution problem in parallel is naturally undertaken by trying to parallelize the algorithm in space, and then still follow a time stepping method from the initial time t = 0 to the final time t = T . This is especially easy to do when an explicit time stepping method is used, because in that case the time step for each component is only based on past, known data, and the time stepp...
متن کاملTime Domain Maxwell Equations Solved with Schwarz Waveform Relaxation Methods
It is very natural to solve time dependent problems with Domain Decomposition Methods by using an implicit scheme for the time variable and then applying a classical iterative domain decomposition method at each time step. This is however not what the Schwarz Waveform Relaxation (SWR) methods do. The SWR methods are a combination of the Schwarz Domain Decomposition methods, see Schwarz [1870], ...
متن کاملSchwarz waveform relaxation algorithms for semilinear reaction-diffusion equations
We introduce nonoverlapping domain decomposition algorithms of Schwarz waveform relaxation type for the semilinear reaction-diffusion equation. We define linear Robin and second order (or Ventcell) transmission conditions between the subdomains, which we prove to lead to a well defined and converging algorithm. We also propose nonlinear transmission conditions. Both types are based on best appr...
متن کاملSchwarz Waveform Relaxation and Krylov Accelerators for Reactive Transport
In this work we propose new algorithms for space time nonlinear reactive transport. They conjugate the versatility of Optimized Schwarz Waveform Relaxation, permitting adaptive time stepping, see [1, 12], and the fast convergence of Newton algorithms, see [6]. We present three approaches which differ in the order of combination of Newton’s method and the Schwarz waveform relaxation algorithm. I...
متن کاملAcceleration of a Schwarz waveform relaxation method for parabolic problems
In this paper we generalize the Aitken-like acceleration method of the additive Schwarz algorithm for elliptic problems to the additive Schwarz waveform relaxation for parabolic problems. The domain decomposition is in space and time. The standard Schwarz waveform relaxation algorithm has a linear rate of convergence and low numerical efficiency. This algorithm is, however, friendly to cache us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2019
ISSN: 1064-8275,1095-7197
DOI: 10.1137/17m115311x